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Integrated modelling of electron runaway requires computationally expensive kinetic
models that are self-consistently coupled to the evolution of the background plasma
parameters. The computational expense can be reduced by using parameterized
runaway generation rates rather than solving the full kinetic problem. However,
currently available generation rates neglect several important effects; in particular,
they are not valid in the presence of partially ionized impurities. In this work, we
construct a multilayer neural network for the Dreicer runaway generation rate which
is trained on data obtained from kinetic simulations performed for a wide range
of plasma parameters and impurities. The neural network accurately reproduces the
Dreicer runaway generation rate obtained by the kinetic solver. By implementing it in
a fluid runaway-electron modelling tool, we show that the improved generation rates
lead to significant differences in the self-consistent runaway dynamics as compared
to the results using the previously available formulas for the runaway generation rate.
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1. Introduction
If the electric field exceeds a critical field in plasmas, the accelerating force on

fast electrons overcomes the collisional friction. The electrons are then accelerated
to relativistic energies – they run away (Dreicer 1959) – until the electric force is
balanced by another mechanism such as synchrotron radiation. Runaway acceleration
occurs in solar flares (Holman 1985), lightning discharges (Dwyer 2007) and in
magnetic fusion devices (Helander, Eriksson & Andersson 2002; Breizman et al.
2019). In tokamaks, runaway electrons form when large electric fields are present:
during startup of the discharge, radio-frequency current drive or disruptions – a
sudden termination of a tokamak discharge. In high-current, reactor-scale machines,
a disruption has the potential to convert a major part of the plasma current to a
relativistic runaway-electron beam. Such a beam would severely damage plasma-facing
components if it is not well controlled (Lehnen et al. 2015).
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An accurate modelling capacity of runaway electrons is essential to evaluate the
different methods aimed at mitigating their effects. To describe the full evolution of
the temperature, plasma composition, electric field, magnetic equilibrium and runaway
current, it would be necessary to simultaneously solve for the relativistic momentum-
space dynamics, the magnetic field evolution (including breakup of magnetic surfaces)
and the transport (including both collisional and turbulent processes). This is, however,
unfeasible with currently available computational resources and will likely remain so
in the foreseeable future.

Until simulations of the full plasma evolution during a disruption can be realized,
as an intermediate step, transport codes and equilibrium solvers could be coupled with
analytical formulas for runaway generation rates. This means that instead of evolving
the full runaway-electron distribution, only key quantities such as the runaway number
density would be considered and computed from the instantaneous electric field and
background plasma parameters. In such fluid models, the runaway-electron density
evolves by analytical generation rates describing Dreicer, hot-tail and avalanche
generation, as well as tritium decay and Compton scattering of γ -rays (which can
be emitted by the activated wall in the nuclear phase of tokamak operation). This
approach has been used in the past to gain insight into the runaway-electron dynamics
and electric-field diffusion; some examples are the GO code (Smith et al. 2006; Gál
et al. 2008; Fehér et al. 2011; Papp et al. 2013) and the work by Martín-Solís, Loarte
& Lehnen (2017).

Although runaway fluid models are useful to understand runaway dynamics, present
tools use runaway generation rates that lack several important effects, including the
effect of synchrotron radiation (Stahl et al. 2015), bremsstrahlung (Embréus, Stahl &
Fülöp 2016) and screening effects in partially ionized plasmas (Hesslow et al. 2017).
The need for amendments is particularly pronounced in scenarios involving disruption
mitigation by massive material injection. The injected impurity ions will radiate the
thermal energy content of the plasma during the thermal quench, and will become
weakly ionized in the resulting cold plasma, implying that the nuclei will be partially
screened by the bound electrons in interactions with fast electrons. Recent studies
indicate substantial differences in the runaway dynamics compared to the fully ionized
case: the effect of partial screening might give order of magnitude differences in both
the Dreicer generation rate (Hesslow et al. 2018) and the avalanche multiplication
factor (Hesslow et al. 2019).

While the avalanche growth rate calculation (Rosenbluth & Putvinski 1997)
was recently generalized to include the effect of partial screening and radiation
reaction (Hesslow et al. 2019), a similar generalization of the Dreicer generation
rate calculation by Connor & Hastie (1975) appears intractable. This is because
the Dreicer rate is exponentially sensitive to the plasma properties at near-thermal
energies, where the collision frequencies have a complicated energy dependence in the
presence of cold impurities. Instead, Martín-Solís, Loarte & Lehnen (2015) suggested
to replace the Dreicer field ED and the effective charge Zeff in the Connor & Hastie
(1975) formula, but otherwise keep the same form of the expression. This approach
has however not been validated by solutions of the kinetic equation.

A different approach to improving the Dreicer generation rate is to use a large
database of numerical solutions of the kinetic equation to train a neural network.
Neural networks have proved to be useful to fit complicated, high-dimensional
results to multi-parameter models, which is the case here since the density of each
impurity species, in combination with a wide range of plasma parameters, gives a
large number of free parameters. Neural networks are widely used in many areas
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of physics, including fusion plasma physics; see e.g. Svensson, von Hellermann &
König (1999), Clayton et al. (2013), Citrin et al. (2015) and Boyer, Kaye & Erickson
(2019).

In this paper, we construct a neural network that determines the Dreicer generation
rate including the effect of partial screening as well as an energy-dependent Coulomb
logarithm. After detailing the kinetic model and its validity (§ 2), we use a neural
network to create a model of the Dreicer generation rate based on kinetic simulations
(§ 3). The resulting network successfully reproduces the runaway generation rates
predicted by the original kinetic solver, and can be directly implemented into
integrated models. As a proof of concept, we implement the network into the runaway
fluid simulation tool GO, and demonstrate that partial screening has a significant effect
on runaway generation (§ 4). Finally, we discuss the applications of the model as
well as possible improvements (§ 5).

2. Kinetic model
The Dreicer (1959, 1960) mechanism for runaway generation originates from the

interplay between collisional energy diffusion and electric-field acceleration. In a time-
independent background plasma, the Dreicer mechanism causes a constant particle
flow through any momentum-space boundary beyond the runaway separatrix1; this
flow rate defines the steady-state Dreicer generation rate,

γ ≡
dnRE

dt
, (2.1)

where nRE is the runaway-electron number density.
To be useful in runaway fluid modelling, the system must be well described by a

quasi-steady-state approximation, so that γ (E, T, ne, . . . , t)≈ γ [E(t), T(t), ne(t), . . .],
where E, T, ne, . . . are the plasma parameters which influence the Dreicer generation
rate in steady state, such as the electric field E, the electron temperature T and the
electron density ne. The quasi-steady-state generation rate thus requires sufficiently
slowly varying parameters.

The most accurate analytical treatment of the Dreicer problem was carried out by
Connor & Hastie (1975), who extended the results of Kruskal & Bernstein (1962) to
include relativistic effects, resulting in
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(2.2)

1Above the second separatrix, where fast particles are decelerated due to for example radiation reaction
losses, the particles will slow down again. This eventually creates a bump-on-tail (Hirvijoki et al. 2015;
Decker et al. 2016; Guo, McDevitt & Tang 2017), which prevents further runaway growth through the Dreicer
mechanism, but the involved energies and time scales makes this effect irrelevant except for near the threshold
Ec. An exception is with strong synchrotron radiation, temperatures of several keV and an electric field
approaching the effective critical electric field; in this case a steady-state Dreicer generation rate cannot clearly
be determined and a full kinetic simulation may be necessary.
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(a) (b)

FIGURE 1. Effect of partial screening, radiation reaction and an energy-dependent
Coulomb logarithm on the Dreicer generation rate. Panel (a) has singly ionized argon
impurities with density nAr = nD = 1020 m−3 at a temperature of T = 10 eV, whereas
panel (b) displays the effect of synchrotron and bremsstrahlung radiation reaction in a
5 T magnetic field plasma with nD = 1020 m−3 and T = 10 keV. In both (a) and (b),
the solid black line shows the analytical formula from (2.2) with C = 1, which was
derived in the completely screened limit (denoted ‘CS’ in the legend), using a constant
Coulomb logarithm and neglecting the effect of radiation (denoted ‘no rad’). Black dots
and red crosses represent the simplified ideal plasma model where screening and radiation
effects are ignored; black dots show CODE simulations using a constant Coulomb logarithm,
whereas red crosses account for its energy dependence. The blue solid line with plus
markers shows results that account for all kinetic effects. For comparison, the black
squares show the numerical results by Kulsrud et al. (1973) in (a), which were obtained
in the non-relativistic limit.

Here, ED = nee3 lnΛ0/(4πε2
0T) is the Dreicer field, Ec = EDT/(mec2) is the

critical electric field, Zeff =
∑

i niZ2
i /ne is the effective plasma charge and τee =

4πε2
0m2

ev
3
Te/(nee4 lnΛ0) is the thermal electron collision time, with the thermal speed

vTe =
√

2T/me, and where ln Λ0 is the Coulomb logarithm evaluated at the thermal
speed (in the original work, ln Λ was assumed to be energy independent). The
order-unity parameter C is undetermined by Connor & Hastie (1975) but has been
quantified in subsequent work to around C≈ 1.0 with our time normalization (Kruskal
& Bernstein 1962; Jayakumar, Fleischmann & Zweben 1993), and the parameters λ,
η and h constitute the relativistic generalization of the generation rate; they approach
unity as E/Ec→∞.

Despite its apparent complexity, the generation rate in (2.2) neglects certain effects
that are necessary for an accurate treatment of the problem. As illustrated in figure 1,
the generation rate deviates significantly from (2.2) already when accounting for
the energy dependence of the Coulomb logarithm ln Λ, an effect which is most
pronounced at the lower temperatures of figure 1(a). By furthermore considering the
effect of partial screening, the difference can reach several orders of magnitude.

At high temperatures (figure 1b), the main deviation from the ideal behaviour is the
energy dependence of the Coulomb logarithm. Since radiation reaction only becomes
important at highly relativistic energies, these losses have a small effect on Dreicer
generation except for where the critical momentum fulfils pc� 1, which is obtained
at near-critical electric fields if the temperature is high. As shown in figure 1(b),
the effect of synchrotron and bremsstrahlung radiation reaction is however modest
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even at relatively synchrotron-favouring parameters with T = 10 keV, B = 5 T and
nD = 1020 m−3. In these simulations, radiation reaction mainly affects the generation
rate close to the effective critical field, which is consistent with previous work (Stahl
et al. 2015). We also note that Dreicer generation predominantly takes place at low
temperatures during disruption scenarios, since the value of E/ED ∼ j/(σED)∼ 1/

√
T

decreases with temperature at constant current density. For the remainder of this work,
we therefore neglect the effect of radiation reaction on the Dreicer generation rate.

We also disregard the effect of toroidicity, which may have an appreciable effect on
Dreicer generation off the magnetic axis: if the bounce time is much shorter than the
detrapping time, the generation rate is reduced due to magnetic trapping (Nilsson et al.
2015). Conversely, at high densities and electric fields E� Ec, which can be present
during tokamak disruptions, the Dreicer generation is approximately local (as in this
work), but will be spatially non-uniform since the induced electric field decreases in
magnitude with major radius (McDevitt & Tang 2019).

The results in this work, including figure 1, were obtained with the linearized
Fokker–Planck solver CODE (Landreman, Stahl & Fülöp 2014; Stahl et al. 2016),
which models a spatially homogeneous, magnetized plasma. The test-particle collision
operator in CODE is given in appendix A. Since the collision operator is linearized, it
is only valid for weak electric fields E� ED. Otherwise, a major part of the thermal
electron distribution runs away and a nonlinear Fokker–Planck equation, solved by
for example NORSE (Stahl et al. 2017), should be used. Conversely, the linear and
nonlinear operators should agree at weak electric fields, and we verify in appendix A
that the test-particle collision operator in CODE gives a similar generation rate to
NORSE.

CODE has a model of partial screening based on the Born approximation (Hesslow
et al. 2018). This is the most significant limitation of this work, since the Born
approximation is strictly valid only for electron speeds obeying v/c � Zα, where
α ≈ 1/137 is the fine-structure constant and Z is the atomic number. For argon and
neon, the validity of the Born approximation has been experimentally verified to
extend beyond this requirement, down to kinetic energies of approximately 1 keV
(Mott & Massey 1965). Below this threshold, the model for partial screening is
approximate, although it has been asymptotically matched to the correct behaviour
as p→ 0. As the Dreicer generation rate is most sensitive to the dynamics near the
critical momentum given by pc & (E/Ec − 1)−1/2, the model is only strictly valid
for E/ED(%) . T/(20 eV), implying that the accuracy of our screening model is
compromised for certain parameters.

Notably, we found that the generalization of the generation rate suggested by Martín-
Solís et al. (2017) – to replace Zeff and ED by expressions involving the increased
collision rates evaluated at an approximate value of the critical momentum pc – gave
poor agreement with kinetic simulations. A more involved amendment of the Dreicer
generation rate (2.2) is therefore required, and would likely result in a significantly
more involved analysis than was done by Connor & Hastie (1975). For this reason,
we resorted to the use of a neural network, which will be described in the following
section.

3. Neural network model for the Dreicer generation rate
We used CODE to determine the steady-state momentum-space distribution of the

fast electrons, from which we determine the normalized generation rate

γ̄ ≡
τee

ne
γ . (3.1)
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Parameter Range Scale

nD (m−3) 1018–1021 Logarithmic
nZ/nD 0–10 Linear
E/ED 0.01–0.13 Linear
T 1 eV–20 keV or 2IZ Logarithmic

TABLE 1. Parameters used in the CODE simulations, their range and how they were
sampled.

In order to minimize the computational cost of the simulations, CODE was used
in the steady-state mode, as described by Landreman et al. (2014) and detailed in
appendix B.

CODE simulations were performed for a large number of points randomly sampled
in the region described in table 1, where nZ is the impurity ion density, and nD is
the density of deuterium (or other hydrogen species; the isotope does not affect the
generation rate). For each ionization state of argon and neon, i.e. Ar+n for n= 0 · · · 18,
and Ne+m for m= 0 · · · 10 (one at a time), 8000 points were sampled. Additionally,
10 000 points were sampled without any impurities (nZ = 0), and 10 000 points with a
mix of different impurities with total density nZ . The maximum temperature was set
to either 20 keV or twice the mean excitation energy, 2IZ; the latter for cases with a
single impurity species. This is because a given charge state does not typically occur
at higher temperatures. For example, IAr+ = 219.4 eV (Sauer, Oddershede & Sabin
2015), at which temperature argon would already be multiply ionized in equilibrium.
Moreover, in our model for partial screening, the enhancement of the slowing-down
collision frequency starts to extend into the thermal population at such temperatures
(Hesslow et al. 2018), and the validity of the screening model starts to become
questionable.

Rather than using the full set of impurity ion densities as input to the neural
network, we use six derived parameters,

ln ne, Zeff,
ne

ntot
,
∑

i

ni

ntot
(Z2

i − Z2
0,i),

∑
i

ni

ntot
Z0,iZi, and

∑
i

ni

ntot

Z0,i

Zi
.

(3.2a−f )

Here, Zi and Z0,i are the atomic number and charge number of species i, respectively,
and ntot =

∑
i Zini is the total density of free and bound electrons. These derived

parameters were chosen to both include the relevant parameters in the completely
screened limit (ne and Zeff) parameters that naturally appear in the partially screened
collision frequencies (ne/ntot and

∑
i(ni/ntot)(Z2

i − Z2
0,i)), as well as the last two

parameters in (3.2), which vary significantly with plasma composition. This reduced
the required size of the network, and allowed it to generalize better to other
impurity species (for example, the neural network could accurately predict the
Dreicer generation rate with carbon impurities although it was not trained for these).
Accordingly, the input data were composed of 8 parameters: six density-related inputs,
the normalized electric field and the natural logarithm of the temperature. This input,
combined with the output γ̄ , was randomly split into a training and validation set
with a 4 : 1 ratio.
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FIGURE 2. Comparison between normalized runaway generation rates obtained from CODE
and those from the neural network regression.

The neural network2 is designed as a multilayer perceptron described by the
following series of matrix multiplications and function applications:

ln γ̄ =W 5 tanh{W 4 · · · tanh(W 1x+ b1)+ · · · + b4} + b5. (3.3)

Here, x is the input vector described above, the matrices W (k) describe the weights
between the layers and the vectors b(k) are the biases. The activation function, tanh, is
applied element-wise to the four hidden layers which were of size 20 (i.e. W 1 ∈R20×8,
{W 2,W 3,W 4} ∈R20×20 and W 5 ∈R1×20). To determine the optimized weight and bias
values, we used the Adam algorithm (Kingma & Ba 2014), which is a stochastic
gradient descent method. The training of the neural network was implemented in
Python using the library PyTorch (Paszke et al. 2017). The validation set was used to
determine when the optimization was sufficiently converged and to avoid overfitting.

Due to feedback between the current and the electric field, an order-unity error in
the Dreicer generation rate will have a marginal impact on the maximum runaway
current at the end of a current quench. This implies that some errors can be accepted,
although the dominating factors must be correctly modelled to capture the final
runaway-electron current. A comparison between the regression neural network and
CODE outputs for a set of 6500 points (different from both the validation and
training set) is shown in figure 2. We found that 99.6 % of the neural network
predictions were within a factor of two of the correct value of γ , and the mean
absolute logarithmic (base 10) error was 0.0283. This indicates that the training data
provided sufficient coverage of the parameter space. The evaluation time of the neural
network is approximately five orders of magnitude faster than a steady-state CODE
simulation. The difference is even larger if the neural network is compared to a full
time-dependent simulation with varying parameters and simultaneously accounting
for avalanche multiplication, which is the type of simulation the generation rates can
replace when used in integrated modelling.

The typical quality of the fits is shown in figure 3, where we display the normalized
generation rate for a temperature of T = 10 eV and deuterium density nD= 1020 m−3.
Figure 3(a) shows the runaway generation rate as a function of normalized electric
field calculated by the neural network, together with CODE simulations, showing
excellent agreement. For reference, the analytical formula (2.2) is also included

2The neural network is available at https://github.com/unnerfelt/dreicer-nn.

https://github.com/unnerfelt/dreicer-nn
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(a) (b)

FIGURE 3. Comparison between the normalized generation rate obtained by the neural
network (solid lines), simulations with the CODE Fokker–Planck solver (blue dots) and the
analytical formula from (2.2) with C= 1 (dashed lines). The temperature was set to 10 eV,
and nD = 1020 m−3. In (a) nNe3+/nD = 1, and in (b) E/ED = 0.04.

(dashed line). Figure 3(b) shows the generation rate as a function of the density of
triply ionized neon normalized to the density of hydrogen. Again, the agreement
between the simulations and neural network is excellent, whereas the disagreement
with the analytical expression is substantial.

4. Application in runaway current modelling

To demonstrate the impact of the modified Dreicer generation rates, we use
the neural network in a self-consistent simulation of the electric field and current
profile evolution performed by the GO numerical tool (Smith et al. 2006). Instead of
modelling the velocity space dynamics for the electrons in the runaway region, GO
considers only their total density nRE. It solves the coupled equations for the runaway
generation and resistive diffusion of the electric field. In elongated plasmas, the latter
reads (Fülöp et al. 2019)

1+ κ−2

2r
∂

∂r

(
r
∂E
∂r

)
=µ0

∂

∂t
(σ‖E+ nREec), (4.1)

where E is the electric field, σ‖ is the Spitzer conductivity with a neoclassical
correction and κ is the elongation.

The model employed in GO has several limitations, e.g. it neglects radial losses due
to magnetic perturbations and coupling to the coils (i.e. GO has a perfectly conducting
wall at radius r = b, which gives an electric-field boundary condition at the plasma
edge r= a by matching to the vacuum solution). Therefore, the numerical results are
not expected to match the experimental values exactly, and the following examples
are shown only as an illustration of the magnitude of the effect expected in an
experimentally relevant scenario.

As an example of a scenario where the effect of partially ionized atoms is expected
to be important, we consider JET discharge no. 79423, in which a disruption was
triggered with injection of 7.4× 1020 argon atoms and a runaway-electron plateau of
'590 kA was observed. The experimental parameters and the details of the discharge
are described by Papp et al. (2013). The pre-disruption parameters in the simulation
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FIGURE 4. Plateau runaway current as a function of argon density normalized to the
initial electron density. Blue dashed lines are simulations with the Connor & Hastie (1975)
formula and solid black lines are simulations with the neural network. Simulations with
squares include 20 % additional carbon, nC = 0.2ne,ini. The experimental value (590 kA)
is shown with the dotted horizontal line, and the vertical dotted line shows the value for
100 % assimilation, corresponding to nAr/ne,ini = 0.88.

were: major radius R= 3 m; minor radius a= 0.88 m; radius of the conducting wall
b = 1.3 m; initial plasma current Ip = 1.93 MA; magnetic field on axis B = 2 T;
elongation κ = 1.3; density ne(r)= n0(1− 1.27 · r2)0.43, with n0= 2.59× 1019 m−3; and
temperature T(r)=T0(1−1.03 · r2)2 with T0=2.17 keV and where r is the normalized
radial distance from the magnetic axis.

In the GO simulations, we only included Dreicer and avalanche runaway sources
(no hot-tail generation). For the avalanche growth rate, we use the formula derived
in Hesslow et al. (2019), which has been shown to give accurate results compared to
numerical solutions of the kinetic equation. The temperature evolution was taken from
the experiment, but the post-disruption measurements exhibit a high degree of noise.
To correct for this artefact, we set the central temperature to T0 = 20 eV after the
thermal quench, which gives a current quench time that agrees with the experiment.
During the thermal quench, the ionization of the impurities was determined by
calculating the density of each charge state for every ion species (nk

Zi
, k= 0 · · · Zi),

dnk
Zi

dt
= ne(Ik−1nk−1

Zi
− (Ik + Rk)nk

Zi
+ Rk+1nk+1

Zi
), (4.2)

where Ik denotes the electron impact ionization rate for the kth charge state and Rk
is the radiative recombination rate, which were both taken from the ADAS database
(Summers 2004). After the disruption, the exact amount of argon was unknown as
the assimilation is highly uncertain, and we therefore scanned over the argon density,
which was assumed to be uniformly spread throughout the plasma. It is reasonable to
assume that in connection with the disruption some additional carbon will penetrate
into the plasma, and therefore we present results with both 0 % and 20 % additional
carbon.

Figure 4 shows the plateau runaway current given by GO as a function of argon
density, using the Connor & Hastie (1975) analytical formula or the neural network,
with or without additional carbon. With the analytical formula, argon densities
corresponding to more than 100 % assimilation are required to match the experimental
value, whereas lower assimilation is sufficient with the neural network.
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(a) (b) (c)

FIGURE 5. Time evolution of the plasma current for the case when the current
approximately matches the experimental value (nAr/ne,ini= 0.6, nC= 0) with (a) the Connor
& Hastie (1975) formula and (b) the neural network. The Dreicer current is shown by
dotted lines, and dashed lines show the total runaway current (Dreicer+avalanche). In
panel (c), the left y-axis shows the induced electric field (Connor–Hastie formula in
solid line, neural network in dashed line), and the right y-axis shows the temperature in
dash-dotted blue line. Both quantities were evaluated at the magnetic axis. Note the shorter
time scale in (c) compared to (a) and (b).

Figure 5(a,b) shows the time evolution of the plasma current for a case when
the current density nearly matches the experimental value (nAr/ne,ini = 0.6, nC = 0)
comparing the analytical prediction with the neural network. The Dreicer generation
mainly occurs in a short interval around 1 ms (although the Dreicer seed is barely
visible in figure 5b). As shown figure 5(c), this time period coincides with the largest
values of E/ED, which is expected as the Dreicer generation rate is highly sensitive
to this normalized electric field. Comparing figures 5(a) and 5(b), the neural network
predicts a significantly reduced Dreicer seed, which is only partially compensated by
the increased avalanche multiplication in the self-consistent electric field in figure 5(c).
The result is an order-unity reduction in the plateau runaway current.

5. Discussion and conclusions
Runaway acceleration of particles occurring in plasmas with strong electric fields

has been studied for more than a century, but only recently has it become possible
to perform kinetic simulations in complex scenarios. However, coupling such kinetic
calculations to a self-consistent simulation of the evolution of the background plasma
parameters still poses a significant computational challenge. It is therefore useful to
have runaway generation rates that can be used in so-called runaway fluid models, i.e.
integrated runaway simulations where generation rates are used to evolve the runaway
current instead of solving the full kinetic problem.

In this work, we presented a neural network that determines the steady-state Dreicer
runaway generation rate accounting for collisions with partially ionized atoms. The
network was trained on a large number of kinetic simulations and gives accurate
results for the Dreicer runaway generation rate in plasmas consisting of hydrogen
isotopes, neon and argon. This tool can therefore be used for rapid evaluation of
such generation rates in any laboratory, space or astrophysical plasma where runaway
electrons are produced. In particular, the tool should be valuable in simulations of
tokamak disruptions involving massive material injection, in which case partially
ionized impurities are expected to play an important role in the dynamics. Together
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with previously developed generation rates for avalanche, hot-tail, tritium decay and
Compton scattering, the Dreicer generation rate neural network offers an improved
runaway fluid model.

In their present form, runaway fluid models have some limitations. Most notably,
these models typically relate the number density generation rate to the associated
current density by approximating the mean parallel runaway velocity 〈v‖〉 ≈ c. This
assumption is expected to be more accurate in avalanche-dominated scenarios, where
the runaway seed population carries a negligible part of the current. In such scenarios,
the runaway number density is amplified through the avalanche mechanism while the
average speed approaches the speed of light. Conversely, if a significant part of the
current is converted into a runaway current through the Dreicer or hot-tail mechanism,
the assumption 〈v‖〉 ≈ c may significantly overestimate the runaway current. As the
mean velocity evolves in time during runaway generation in such scenarios, 〈v‖〉
cannot be determined by steady-state simulations like those performed here, but
would require time-dependent modelling including the history of the electric field.
Nevertheless, this generation rate tool offers an improvement of the fluid models
already without accounting for such effects, especially because runaway generation
is generally avalanche dominated in the present and future large tokamaks that carry
multi-megaampere plasma currents.

As an illustration, we implemented this model in GO (Smith et al. 2006), and
presented numerical solutions of the coupled equations of runaway generation and
electric-field diffusion in a JET-like disruptive scenario. In this scenario, we observed
that the plateau runaway current was significantly reduced when using the neural
network instead of the Connor–Hastie formula, which demonstrates the need to
account for partially ionized atoms for realistic modelling of Dreicer generation. The
neural network presented here can therefore be useful to improve runaway-electron
modelling in tokamak simulation codes such as ASTRA (Fable et al. 2016), JOREK
(Bandaru et al. 2019) and ETS (Pokol et al. 2019).
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Appendix A. Collision operator used in the Fokker–Planck simulations

The kinetic equation solved by CODE (Landreman et al. 2014; Stahl et al. 2016)
describes a magnetized, homogeneous plasma,

∂fe

∂t
+ eE

(
ξ
∂fe

∂p
+

1− ξ 2

p
∂fe

∂ξ

)
︸ ︷︷ ︸

electric field

= CFP︸︷︷︸
collisions

+Cbr −
∂

∂p
· (Fsynfe)︸ ︷︷ ︸

radiation reaction

+S, (A 1)
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where fe is the electron distribution function, E is the component of the electric field
that is antiparallel to the magnetic field B and ξ = p · B/(pB) is the cosine of the pitch
angle. Collisions are modelled by the Fokker–Planck collision operator (as this work
focuses on Dreicer generation, a large-angle collision operator describing avalanche
generation is not included). Radiation losses are modelled by Cbr (the bremsstrahlung
collision operator) and Fsyn (the synchrotron radiation reaction force). The Fokker–
Planck solver CODE includes several options for the collision operator. In this work we
use the test-particle collision operator given by Braams & Karney (1989) and Pike &
Rose (2014), with corrections for partial screening according to Hesslow et al. (2018),

CFP =
1
p2

∂

∂p

[
p3

(
νsfe +

1
2
ν‖p

∂fe

∂p

)]
+

1
2
νD
∂

∂ξ

[(
1− ξ 2

) ∂fe

∂ξ

]
, (A 2)

where the slowing-down, parallel and deflection frequencies are given by, respectively,

νs =
1
τ

γ 2

p̄3

1
lnΛ0

(
lnΛee p̄2

γ 2
Ψs(p̄, Θ)+ h(p̄)

)
,

ν‖ =
1
τ

2γΘ
p̄3

Ψs(p̄, Θ),

νD =
1
τ

γ

p̄3

1
lnΛ0

(
lnΛee 2p̄

γ
ΨD(p̄, Θ)+ lnΛeiZeff + g(p̄)

)
.


(A 3)

Here, p̄ = p/(mec) is the normalized momentum, Θ = T/(mec2) and τ = 4πε2
0m2

ec3/
(nee4 lnΛ0) is a relativistic collision time. The energy-dependent Coulomb logarithm is
modelled by matching the thermal Coulomb logarithm lnΛ0=14.9–0.5 ln(ne[1020 m−3

])
+ ln(T[keV]) from Wesson (2011) and the high-energy formula from Solodov & Betti
(2008), according to

lnΛee
= lnΛ0 +

1
k

ln(1+ [2(γ − 1)/p̄2
Te]

k/2),

lnΛei
= lnΛ0 +

1
k

ln[1+ (2p̄/p̄Te)
k
],

 (A 4)

where p̄Te =
√

2T/(mec2) is the normalized thermal momentum and the parameter
k= 5 is chosen to give a smooth transition. The contributions from the fully ionized
plasma are captured by the functions

Ψs(p̄, Θ)=
γ 2Ψ1 −ΘΨ0 + (Θγ − 1)p̄e−γ /Θ

p̄2K2(1/Θ)
,

ΨD(p̄, Θ)=
(p̄2γ 2

+Θ2)Ψ0 +Θ(2p̄4
− 1)Ψ1 + γΘ[1+Θ(2p̄2

− 1)]p̄e−γ /Θ

2γ p̄3K2(1/Θ)
,

 (A 5)

with Ψ0 =
∫ p̄

0 exp[−
√

1+ s2/Θ]/(
√

1+ s2) ds, Ψ1 =
∫ p̄

0 exp[−
√

1+ s2/Θ] ds and K2
is the second-order modified Bessel function of the second kind. Finally, the partial
screening corrections are

h(p̄)=
∑

i

ni

ne
Ne,i

{
1
5

ln

[
1+

(
p̄
√
γ − 1

Ii/mec2

)5
]
− β2

}
,

g(p̄)=
∑

i

ni

ne

{
2
3
(Z2

i − Z2
0,i) ln[(p̄āi)

3/2
+ 1] −

2
3

N2
e,i(p̄āi)

3/2

(p̄āi)3/2 + 1

}
,

 (A 6)
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where Z0,i is the charge number, Zi is the atomic number and Ne,i = Zi − Z0,i is
the number of bound electrons of the nucleus for species i. The length parameter āi
is given in Hesslow et al. (2018) and the mean excitation energy Ii in Sauer et al.
(2015).

The collision operator given above is a linearized relativistic test-particle operator,
i.e. the field-particle part of the operator is neglected. To assess the discrepancy due to
the combined effect of the field-particle operator and nonlinear effects, we compared
the runaway generation rates computed with CODE, using the test-particle operator
given above, and simulations with the fully nonlinear kinetic equation solver NORSE
(Stahl et al. 2017), which uses the collision operator derived by Braams & Karney
(1989). The simulations were performed at temperatures in the range 10 eV–10 keV,
and for electric fields E/ED ≈ 1 %–3.5 %, corresponding to E/Ec ≈ 2–2700. In all
simulations, we find agreement between CODE and NORSE simulations within a factor
of two, which is enough to capture the order of magnitude of the Dreicer seed.
Below 1 keV, where E/Ec� 1, the two tools agreed within 15 %. In contrast, when
the temperature increases beyond 1 keV, the differences were up to 50 %. This is
because E/Ec decreases with temperature at constant E/ED, and since the Dreicer
generation rate is dramatically sensitive to the electric field at near-critical values,
even a negligible difference in the electric field can lead to a significant difference in
the generation rate. In other words, the observed differences may be smaller than any
reasonable uncertainty in the electric field. Given the orders-of-magnitude variation of
the Dreicer generation rate with electric field, the errors here are deemed acceptable
and sufficient to capture the magnitude of the Dreicer seed.

Appendix B. Calculation of the steady-state runaway generation rate
To rapidly calculate the Dreicer generation rate, CODE can be used in steady-state

mode as described by Landreman et al. (2014). Equation (A 1) has the form

∂fe

∂t
+Mfe = S, (B 1)

which implies that the steady-state distribution can be obtained by fe =M−1S, where
S is a source term that cancels the constant outflow of particles due to the Dreicer
mechanism. The steady-state generation rate γ can then be obtained by integrating
equation (A 1) over 2π

∫
∞

pb
p2 dp

∫ 1
−1(·) dξ , where pb is taken so that the source S

vanishes for p > pb. If radiation reaction is neglected, this yields

γ =−4π

[
−

1
3

eEp2f1 + p4 1
2
ν‖
∂f0

∂p
+ p3νsf0

]
p=pb

, (B 2)

where fL = (2L + 1)2−1
∫ 1
−1 fePL(ξ) dξ is the Lth Legendre mode of the steady-state

distribution. This generation rate is insensitive to the exact shape of S as long as it
is limited to the bulk and does not affect the runaway population (Landreman et al.
2014); accordingly, the source is taken to be S = αe−p/p2

Te , with the magnitude α
determined from the normalization of fe. If (B 2) is numerically well resolved, the
generation rate is also independent of pb as long as the source S vanishes for p > pb.
Here, we took the average value of γ over pb/pTe ∈ [10, 50]. The lower limit was
raised if there were large variations within the interval, which may occur due to
floating point errors when evaluating (B 2) for weak electric fields.
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